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Figure 1. AI, RM-1 and LNCaP prostate cancer cells were plated 
at escalating numbers and 48 hours VSV-GFP or VSV-F added at  
MOI of 0.1. Cell numbers were assayed daily in triplicate for 3-4 
days for viability by MTT assay. 

Introduction 

The goal of this grant proposal is to examine the efficacy of an engineered VSV that expresses the 

fusogenic protein from the Newcastle Disease Virus (NDV) in comparison to wild type VSV.  

Fusogenic protein expression has been shown to lead to necrotic cell death through the production of 

large syncytia, which in turn may result in anti-tumor immune effects. Our efforts focused on a mutated 

fusogenic glycoprotein, L289a, which allowed for syncytia formation  independent of the viral 

hemagglutinin-neuraminidase (HN) protein and exhibits a 50% enhancement in HN-dependent fusion 

over wild-type (wt) F protein. Through the introduction of syncytia formation, we proposed that we 

would engender better cell death in prostate cancer cell lines when compared to native VSV, while 

retaining its specificity for cancer cells and spare normal cells. Work during the first year demonstrated 

that both VSV and VSV-F in the presence of low doses of interferon did not kill normal prostate 

epithelial cells, while under the same conditions rapidly killed most prostate cancer cells in vitro. In each 

instance cell kill was seen even at low initial doses of virus and VSV-F demonstrated superior efficacy 

over wild-type VSV (VSV-G). This past year studies focused on completion of some in vitro studies and 

exploration of the in vivo effects of VSV 

versus VSV-F.  

 

Body 

Earlier studies demonstrated enhanced 

ability of VSV-F to a variety of prostate 

cancer cell lines. We then explored some of 

the underlying mechanisms. First, we 

explored the effect of varying plating 

densities of cells prior to virus exposure on 

the killing abilities of both viruses. As 

shown in Figure 1, the superior abilities of 



 

 

VSV-F were more apparent at the higher densities. This finding would support the notion that the 

enhanced effects of VSV-F are mediated through formation of syncytia which are more likely to form at 

higher cell densities. Published experience with VSV has demonstrated its ability to kill through 

induction of apoptosis. We studied whether or not this characteristic remained in the face of expression 

of the F protein and the induction of syncytia, which mediate necrotic cell death. As demonstrated in 

Figure 2a, there was marked induction of apoptosis mediated by both viruses in all 3 cell lines peaking 

at 24 hours post-virus exposure. In each instance VSV-G induced more apoptotic activity, though this 

was a modest difference. By light microscopy at 24 hours, VSV-F induced syncytia, a phenomenon not 

seen with VSV-G. TUNEL staining of these syncytia was negative (data not shown). Therefore, it would 

seem that VSV-F retains the powerful ability to induce apoptosis in addition to killing cells through 

syncytia formation. 
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Figure 2. Plated LNCaP, AI and RM-1 cells were exposed to VSV-GFP, VSV-F or UV-inactivated VSV at MOI of 0.1. Apoptosis 
was determined by TUNEL assay at 6, 12 and 24 hours post-viral exposure in triplicate for each condition at each time point. 
Representative photomicrographs of each cell line are shown at 24 hours comparing VSV-GFP and VSV-F. 
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Figure 4. RM-1 Orthotopic tumors were injected with times with either VSV-GFP, VSV-F or 
PBS in a survival study. 
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Figure 3. RM-1 orthotopic tumors were injected with VSV-GFP, VSV-F or PBS. Mice were 
either sacrificed at 14 days post-tumor cell inoculation or continued in a survival study. 
Tumors from sacrificed mice were weighed. 

Our attention then 

turned to the 

performance of  in 

vivo studies, using 

the orthotopic RM-1 

model. Tumor cells 

are inoculated into the dorsolateral prostate and 6 days later macroscopic tumors were injected with 

virus. The maximum liquid volume that can be injected into the mouse prostate without gross spillage is 

50ul; this correlated with 8x108 vp which served as the dose tested. Mice were randomized to injection 

with a single therapeutic dose of VSV-G, VSV-F or equal volume of PBS. In the initial experiments all 

mice were sacrificed 8 days later, 14 days post-tumor inoculation, and wet weights of tumor obtained. 

Both vectors resulted in smaller tumors, 28% for VSV-G and 44% for VSV-F than control, respectively 

(Figure 3A) (p=0.03 VSV-G vs VSV-F t-test).  As survival study was set up under the same conditions. 

Animals treated with VSV-F lived 25% longer than controls (Figure 3B) (19.5+/-1 days vs 15+/-.5 days, 

p<0.001, Mantel-Cox), while animals treated with VSV-G had median survival of 18+/-.45 days (VSV-

G and VSV-F, p=0.001, Mantel-Cox).  We then explored the potential benefit of repetitive injections of 

VSV vectors. In a 

survival study mice 

were injected at 

days 6, 9 and 12 

with 8x108 vp. 

Median survival for 

VSV-G was 16.2+/-

.5 days compared to 

14.3+/-.5 days 

(Figure 4) (p=0.001, 
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Figure 5. Levels of IFN-alpha were measured in 
tumors on the 3rd day post-vector injection. 

 PC3 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

1. 6

24 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

PC3 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

1. 6

48 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

PC3 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

1. 6

72 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

RM1 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

48 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

RM1 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

24 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

RM1 I nt er f er on Responsi veness

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

72 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

LNCap I nt er f er on Responsi veness

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

48 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

LNCap I nt er f er on Responsi veness

0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9

72 Hour s

Ab
so

rb
an

ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

LNCap I nt er f er on Responsi veness

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

24 Hour s
Ab

so
rb

an
ce

0/ 0
0/ G
0/ F
100/ G
100/ F
300/ G
300/ F
500/ G
500/ F
1000/ G
1000/ F
MOI . 1

Figure 6. PC3, RM-1 and LNCaP cells were exposed to escalating doses of  IFN-Alpha for 16 
hours prior to the addition of VSV-GFP or VSV-F at MOI of 0.1. Cell viability was ascertained 
in triplicate daily for each condition by MTT assay. 

Mantel-Cox), compared to 23.6+/-2.3 days with 2 of 

16 mice long term survivors.  

 

Interestingly, we noted that there was no enhanced 

benefit to 3 injections of VSV over a single injection. 

Among the possibilities reviewed was that perhaps the 

defective interferon response pathways could be 

overcome at higher doses of  INF induced by the immune response against the vector to negatively 

impact  viral 

replication. To 

address this 

hypothesis,  we 

first ascertained 

levels of IFN-α in 

treated tumors on 

the third day 

following  vector 

injection – the day 

on which in the 

repetitive injection 

study, the second dose of virus would be injected. Tumors were excised and weighed, flash frozen and 

mechanically lysed in the presence of protease inhibitors. The level of IFN-α was measured by ELISA 

with the calculation taking into account the weight of the tumor. Levels of cytokine in VSV-G treated 

tumors were double that of control while levels in VSV-F tumors were three times higher than control 

(Figure 5). To explore how IFN- α would impact on VSV replication,  we exposed 3 cell lines, PC3, 

RM-1 and LNCaP at a fixed dose of VSV-G and VSV-F (0.1 MOI) and escalating doses of cytokine: 0-



 

 

1000u (Figure 6). These studies 

noted differing responses to VSV 

infection: PC3 cells are relatively 

resistant to either VSV virus, 

which can be blocked by low 

doses of IFN- α, reminiscent of 

how non-malignant cells react. In 

contrast LNCaP cells remain 

sensitive to VSV infection and 

replication even at very high 

doses of IFN- α, demonstrating 

the presence of fully defective 

IFN response pathways. RM-1 

cells are sensitive to VSV at low 

doses of IFN- α, which can be overcome by higher doses of cytokine, implying only partially defective 

pathways. Indeed, at the levels of IFN-α measured within the tumor VSV-G is unable to replicate and 

kill RM-1 cells in vitro.  We felt that the lack of improved efficacy of repetitive injection of RM-1 

tumors in vivo was due to the induction of high levels of IFN-a within treated tumors which inhibited 

replication of VSV.  

 

To explore this hypothesis in vivo, tumor bearing were serially injected as set up in Figure 4 in addition 

to normal mouse prostate as a control and serially sacrificed at set time points following vector injection. 

Tumors were divided for measurement of cytokine levels or for performance of plaque assay to ascertain 

the level of virus within tumor tissue (Figure 7 & 8). We noted escalating concentrations of IFN with 

each injection in both tumor bearing and normal tissues not seen in control injected tissues due to the 

inflammatory response evoked in response to the vector injection (Figure 7).  By plaque assay repetitive 
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Figure 7 Levels of IFN-α  (U/gm) on Sequential Days Following VSV-F  vs 
UV-inactivated VSV-F. * P< 0.01 (VSV-F vs UV-VSV-F). Tumors were 
weighed, snap frozen and crushed in the presence of protease inhibitors in 
NS. After centrifuging the lysate was aliquoted and frozen.  Measurements of 
thawed  lysates  was ascertained by ELISA. 
Day 1 post first injection of VSV-F or UV-VSV-F  
Day 3 post first injection of VSV-F or UV-VSV-F 
Day 1 post second injection of VSV-F or UV-VSV-F 
Day 3 post second injection of VSV-F or UV-VSV-F 
Day 1 post third injection of VSV-F or UV-VSV-F 



 

 

dosing resulted only in increasing viral doses in normal prostate tissues, while there significantly less 

virus in prostate cancer tissue following the 3rd injection. Taken together this experiment validates our 

hypothesis that repetitive injections into tumor tissue results in elevated levels of IFN which in turn 

inhibits VSV replication and negates the therapeutic benefit of repeated injections. Furthermore, this 

clearly indicates the benefit seen with repeated injections with VSV-F must be related to the expression 

of the syncytial protein, presumably via an immune response as opposed to viral replication. Lastly,  

these studies indicate  that  theory that malignant cells harbor clear abnormalities in the interferon 

response pathway is not universal 

and the future use of these virus 

will depend on further 

improvements in its engineering.  

 

The Original application and 

SOW were to explore the ability 

of co-expression of the Fusion 

protein with IL-12 to enhance the 

expected immune induced by 

expression of the F protein 

independently despite numerous 

attempts. However, we were 

unable to construct a VSV vector 

which could express both IL-12 and NDV-F. Furthermore, given the problems of innate immunity 

reducing the ability of VSV to replicate in moderately sensitive cancer cells, the decision was made in a 

deviation from the SOW for the last year to construct a VSV vector which could evade the innate 

immune system.  

 

Figure 8.  Plaques Assay for VSV  on Sequential Days Following VSV-F  vs 
UV-inactivated VSV-F. * P< 0.01 (VSV-F vs UV-VSV-F). Tumors were 
weighed, snap frozen and crushed in the presence of protease inhibitors in 
NS. After centrifuging the lysate was aliquoted onto BK 293 cells for plaque 
assay.   
  Day 1 post first injection of VSV-F or UV-VSV-F  
Day 3 post first injection of VSV-F or UV-VSV-F 
Day 1 post second injection of VSV-F or UV-VSV-F 
Day 3 post second injection of VSV-F or UV-VSV-F 
Day 1 post third injection of VSV-F or UV-VSV-F 
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Studies by others have demonstrated that cellular components of the innate immune system, such as 

granulocytes, natural killer (NK) cells, NKT cells, and macrophages, are rapidly recruited and activated at the 

sites of viral infection. These 

cells participate in the 

antiviral response both by 

directly killing infected cells 

and by producing antiviral 

cytokines. We therefore 

hypothesized that the host 

inflammatory response to 

VSV infection plays a critical role in the suppression of intratumoral VSV replication, and that by counteracting 

these responses we could substantially enhance VSV oncolysis and treatment efficacy. 

Many inflammatory processes are mediated by chemo-attractant and immuno-modulatory molecules called 

chemokines, which play a central role in the host defense against invading viruses and in the pathogenesis of 

inflammatory diseases. A number of viruses have evolved elegant mechanisms to evade detection and 

subsequent destruction by various immune cells in the host.One such mechanism involves the production of 

secreted chemokine–binding proteins, which exhibit no sequence homology to any known host proteins, yet 

function to competitively bind and/or inhibit the interactions of chemokines with their cognate receptors, 

thereby suppressing the chemotaxis of inflammatory cells to the infection sites. While the functions and 

mechanisms of viral chemokine binding proteins (vCKBPs) have been extensively studied, they had not been 

exploited for the purpose of enhancing the oncolytic potency of heterologous viruses in cancer treatment. In this 

study we describe the molecular construction and characterization of a novel rVSV vector that encodes the 

secreted form of the equine herpes virus-1 glycoprotein G, which is a vCKBP that binds C, CC, and CXC 

chemokines with high affinity.  

RM-1 Cell Replication and Killing By rVSV-MΔ51-M3 
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C4-2 Cell Replication and Killing By rVSV-MΔ51-M3 
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Figure 9.  MTT Assay of RM-1 and C4-2 cells following Infection with VSV-M51-M3. 
Plated cells were exposed to virus and MTT assay at designated time points in triplicate. 



 

 

 Using this vector we have shown in preliminary work (Figure 9) that it can effectively kill a variety of 

prostate cancer cells and are now beginning in vivo studies in immunocompetent mice to demonstrate efficacy 

– we hope to use this preliminary data and the knowledge from this grant to apply for future funding from the 

DoD using this vector.  

 

 

Key Research Accomplishments 

1. The enhanced killing abilities of VSV-F are mediated through syncytia formation without 

significantly diminishing VSV’s strong induction of apoptosis. 

2. VSV-F results in superior growth effects over that of wild-type VSV, resulting enhanced survival in 

vivo. 

3. Prostate cancer cells display differential IFN response pathways, which can adversely its oncolytic 

capabilities. 

4. The growth suppressive activities of VSV-F occur at doses of IFN which inhibit replication in IFN 

responsive cells. 

Reportable Outcomes 

Abstract at  presented at the American Urological Association meeting: Vesicular Stomatitis Virus as 

Oncolytic Viral Gene Therapy for Prostate Cancer. Seth A. Strope, Jian Pu, Sherwin Zargaroff, Savio 

LC Woo, Simon J Hall, Abstract # 429. 

Conclusions 

 The data clearly demonstrate the enhanced abilities of VSV-F, especially with repetitive injections, in a 

cell line which has retained some interferon sensitivity. We are currently exploring the role of the immune 

response as the underlying driver of this activity.  
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